从光学传感原理、器件架构、器件物理和集成技术等多方面开展系统深入研究,解决光学传感检测技术小型化和片上集成化过程中面临的关键科学技术问题,发展具有自主知识产权且符合“3A(Applicable,Accessible,Affordable)”标准的便携式光学传感检测技术与器件。
研究方向一:
近年来,氢能产业愈发受到关注。除了氢能汽车和氢染料电池这些热门领域之外,在化工、航空和半导体产业等领域中,氢气也有着广泛应用。为此,甚至诞生了一个名为“hydrogen economy”的专用词汇。氢气很重要,同时它又非常危险,不仅易燃、易爆而且氢气的泄露非常不易被察觉。日本福岛核电站的爆炸事故,正是由于氢气泄漏造成的。因此,在氢气的产生、运输、存储和使用的所有环节,都需要氢气传感器。由于检测难度较高,因此这类传感器必须具备高灵敏度、高集成性、低延时、低成本等特质。
在气体光学的传感技术中,经常会用到可调谐激光吸收光谱技术。但是,这种技术在氢气传感上表现不佳,原因在于氢气的红外吸收非常弱,这会导致检测灵敏度被拉低。而且,这种技术依赖昂贵的可调谐激光器和探测器,通常需要较大尺寸的气室以便可以形成谐振腔。此外,使用电学或电化学传感器来进行氢气传感,通常需要施加偏压和加温,灵敏度既不够高、延时也比较长,故在氢气传感应用中存在一些劣势。
基于此,暨南大学教授和教授团队提出一种新型氢气传感技术,它单片集成了光催化、光传感、光探测等功能,可以有效克服常规光学传感技术对于外部复杂光学检测设备的依赖性,同时在室温和零偏压条件下获得了 ppm 级的高灵敏度、以及速度达到秒级的氢气传感性能。